About Bezout inequalities for mixed volumes

M. Szusterman,
Université de Paris

May 2022

Workshop in Convexity and higher-dimensional probability, Atlanta

Mixed volume : Minkowski's definition

Denote by $\mathcal{K}_{n}=\left\{K \subset \mathbb{R}^{n}: K\right.$ compact convex set $\}$.
Let $K, L \in \mathcal{K}_{n}$. Then $\operatorname{Vol}_{n}(\lambda K+\mu L)$ is a polynomial in (λ, μ) :

$$
\operatorname{Vol}_{n}(\lambda K+\mu L)=\sum_{k=0}^{n}\binom{n}{k} v_{k} \lambda^{k} \mu^{n-k}
$$

where $v_{k}=V_{n}(K[k], L[n-k])=V_{n}(K, \ldots, K, L, \ldots, L)$ are called mixed volumes.

Mixed volume : Minkowski's definition

- Let $K, L \in \mathcal{K}_{n}$. Then $\operatorname{VoI}_{n}(\lambda K+\mu L)=\sum_{k=0}^{n}\binom{n}{k} v_{k} \lambda^{k} \mu^{n-k}$
- Let $K_{1}, \ldots, K_{m} \in \mathcal{K}_{n}$. Then :

$$
\operatorname{VoI}_{n}\left(\lambda_{1} K_{1}+\cdots+\lambda_{m} K_{m}\right)=\sum_{\substack{a=\left(a_{1}, \ldots, a_{m}\right) \\|a|=n}}\binom{n}{a} v_{a} \lambda^{a}
$$

where $v_{a}=V_{n}\left(K_{1}\left[a_{1}\right], \ldots, K_{m}\left[a_{m}\right]\right)$ are called mixed volumes.

Mixed volume : Minkowski's definition

- Let $K, L \in \mathcal{K}_{n}$. Then $\operatorname{VoI}_{n}(\lambda K+\mu L)=\sum_{k=0}^{n}\binom{n}{k} v_{k} \lambda^{k} \mu^{n-k}$
- Let $K_{1}, \ldots, K_{m} \in \mathcal{K}_{n}$. Then :

$$
\operatorname{Vol}_{n}\left(\lambda_{1} K_{1}+\cdots+\lambda_{m} K_{m}\right)=\sum_{\substack{a=\left(a_{1}, \ldots, a_{m}\right) \\|a|=n}}\binom{n}{a} v_{a} \lambda^{a}
$$

where $v_{a}=V_{n}\left(K_{1}\left[a_{1}\right], \ldots, K_{m}\left[a_{m}\right]\right)$ are called mixed volumes.

- $V_{n}: \mathcal{K}_{n}^{n} \rightarrow[0,+\infty)$ is a multilinear, continuous functional.

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an affine transform. Then :

$$
V_{n}\left(T K_{1}, \ldots, T K_{n}\right)=\operatorname{det}(T) V_{n}\left(K_{1}, \ldots, K_{n}\right)
$$

Bezout inequality

Let $f_{1}, \ldots, f_{r}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be polynomials. Denote by X_{1}, \ldots, X_{r} the associated algebraic varieties $\quad\left(X_{i}:=\left\{x \in \mathbb{R}^{n}: f_{i}(x)=0\right\}\right)$.
The Bezout inequality states that :

$$
\operatorname{deg}\left(X_{1} \cap \ldots \cap X_{r}\right) \leq \prod \operatorname{deg}\left(X_{i}\right)
$$

[B]

Bezout inequality

Let $f_{1}, \ldots, f_{r}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be polynomials. Denote by X_{1}, \ldots, X_{r} the associated algebraic varieties.
The Bezout inequality states that :

$$
\operatorname{deg}\left(X_{1} \cap \ldots \cap X_{r}\right) \leq \prod \operatorname{deg}\left(X_{i}\right)
$$

[B]

Denote by P_{1}, \ldots, P_{r} the Newton polytopes of f_{1}, \ldots, f_{r}

Bezout inequality

Let $f_{1}, \ldots, f_{r}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be polynomials. Denote by X_{1}, \ldots, X_{r} the associated algebraic varieties.
The Bezout inequality states that :

$$
\begin{equation*}
\operatorname{deg}\left(X_{1} \cap \ldots \cap X_{r}\right) \leq \prod \operatorname{deg}\left(X_{i}\right) \tag{B}
\end{equation*}
$$

Denote by P_{1}, \ldots, P_{r} the Newton polytopes of f_{1}, \ldots, f_{r}
We can reformulate $[B]$ within the language of mixed volumes :

$$
V\left(P_{1}, \ldots, P_{r}, \Delta[n-r]\right) V(\Delta)^{r-1} \leq \prod_{i=1}^{r} V\left(P_{i}, \Delta[n-1]\right)
$$

thanks to a theorem by Bernstein, Kushnirenko and Khovanskii.

Bezout inequality (again)

Let $f_{1}, \ldots, f_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be polynomials.
Let $X=X_{2} \cap \ldots \cap X_{n}$ of dimension 1, and $Y=X_{1}($ codim.1).
Then Bezout inequality :

$$
\operatorname{deg}(X \cap Y) \leq \operatorname{deg}(X) \operatorname{deg}(Y)
$$

translates to

$$
V_{n}\left(P_{1}, \ldots, P_{n}\right) V_{n}(\Delta) \leq V_{n}\left(P_{2}, \ldots, P_{n}, \Delta\right) V_{n}\left(P_{1}, \Delta[n-1]\right)
$$

(which allows to recover previous inequality $[B]$)

Relaxed Bezout inequality

- for the n-simplex Δ :

$$
V\left(L_{1}, \ldots, L_{n}\right) V(\Delta) \leq V\left(L_{2}, \ldots, L_{n}, \Delta\right) V\left(L_{1}, \Delta[n-1]\right)
$$

- Thanks to Diskant inequality, J. Xiao has shown (2019) :

$$
V\left(L_{1}, \ldots, L_{n}\right) V(K) \leq n V\left(L_{2}, \ldots, L_{n}, K\right) V\left(L_{1}, K[n-1]\right)
$$

for any convex bodies L_{1}, \ldots, L_{n}, and for any K.

Bezout constants

We define :

$$
b_{2}(K)=\max _{L_{1}, L_{2}} \frac{V\left(L_{1}, L_{2}, K[n-2]\right) V(K)}{V\left(L_{1}, K[n-1]\right) V\left(L_{2}, K[n-1]\right)} \geq 1
$$

And similarly

$$
b(K)=\max _{L_{1}, \ldots, L_{n}} \frac{V\left(L_{1}, \ldots, L_{n}\right) V(K)}{V\left(L_{2}, \ldots, L_{n}, K\right) V\left(L_{1}, K[n-1]\right)} \geq 1
$$

So that:

- $b_{2}(\Delta)=b(\Delta)=1$;
- $\forall K, 1 \leq b_{2}(K) \leq b(K)$;
- by [Diskant, Xiao] : $\max _{K} b(K) \leq n$.
- $\forall K, b(T K)=b(K)$, for any (full-rank) affine T.

Who are the minimizers ?

Question [SZ '15]
For which bodies do we have $b_{2}(K)=1$?

Question [SSZ '18]
For which bodies do we have $b(K)=1$?

SZ '15 \rightarrow [Soprunov, Zvavitch] (2015)
SSZ '18 \rightarrow [Saroglou, Soprunov, Zvavitch] (2018)

Who are the minimizers ?

Qstn [SZ '15] For which K, do we have $b_{2}(K)=1$?

Qstn [SSZ '18] For which K do we have $b(K)=1$?

- Theorem[SSZ '18] If $b(K)=1$, then $K=\Delta$.

Who are the minimizers ?

Qstn [SZ '15] For which K, do we have $b_{2}(K)=1$?

Qstn [SSZ '18] For which K do we have $b(K)=1$?

- Theorem[SSZ '18] If $b(K)=1$, then $K=\Delta$.
- this doesn't close former question, since $b_{2}(K) \leq b(K)$.

Who are the minimizers ?

Qstn [SZ '15] For which K, do we have $b_{2}(K)=1$?

- Theorem[SSZ '18] .If $b_{2}(P)=1$, then $P=\Delta$. (where P is an n-polytope)

Qstn [SSZ '18] For which K do we have $b(K)=1$?

- Theorem[SSZ '18] If $b(K)=1$, then $K=\Delta$.

Who are the minimizers ?

Qstn [SZ '15] For which K, do we have $b_{2}(K)=1$?

- Theorem[SSZ '18] .If $b_{2}(P)=1$, then $P=\Delta$. (where P is an n-polytope)
$-\operatorname{Prop}\left[S Z\right.$ '15] if $b_{2}(K)=1$, then $K \neq A+B \quad$ (with $\left.A \not \equiv B\right)$ (K cannot be decomposable)

Qstn [SSZ '18] For which K do we have $b(K)=1$?

- Theorem[SSZ '18] If $b(K)=1$, then $K=\Delta$.

Who are the minimizers ?

Qstn [SZ '15] For which K, do we have $b_{2}(K)=1$?

- Thm[SSZ '18] Let $P \in \mathbf{P o l y}_{n}$. Then $b_{2}(P)=1 \Rightarrow P=\Delta$.
- Thm['15, '18] if $b_{2}(K)=1$, then K cannot be weakly decomposable $\left(\rightarrow K \notin \mathcal{W}_{n}\right)$

Qstn [SSZ '18] For which K do we have $b(K)=1$?

- Theorem[SSZ '18] If $b(K)=1$, then $K=\Delta$.

Who are the minimizers ?

Qstn [SZ '15] For which K, do we have $b_{2}(K)=1$?

- Thm[SSZ '18] Let $P \in \mathbf{P o l y}_{n}$. Then $b_{2}(P)=1 \Rightarrow P=\Delta$.
- Thm['15, '18] if $b_{2}(K)=1$, then K cannot be weakly decomposable ($\rightarrow K \notin \mathcal{W}_{n}$)
\rightarrow excludes bodies with (somewhere) smooth boundary.

Qstn [SSZ '18] For which K do we have $b(K)=1$?

- Theorem[SSZ '18] If $b(K)=1$, then $K=\Delta$.

Who are the minimizers ?

Qstn [SZ '15] For which K, do we have $b_{2}(K)=1$?

- Thm[SSZ '18] Let $P \in$ Poly $_{n}$. Then $b_{2}(P)=1 \Rightarrow P=\Delta$.
- Thm['15, '18] if $b_{2}(K)=1$, then K cannot be weakly decomposable $\left(\rightarrow K \notin \mathcal{W}_{n}\right)$
\longrightarrow recovers characterization among polytopes, since Poly $_{n} \cap \mathcal{W}_{n}=$ Poly $_{n} \backslash\{\Delta\}$.

Qstn [SSZ '18] For which K do we have $b(K)=1$?

- Theorem[SSZ '18] If $b(K)=1$, then $K=\Delta$.

Who are the minimizers ?

Qstn [SZ '15] For which K, do we have $b_{2}(K)=1$?

- Thm[SSZ '18] Let $P \in$ Poly $_{n}$.Then $b_{2}(P)=1 \Rightarrow P=\Delta$.
- Thm['15, '18] if $b_{2}(K)=1$, then K cannot be weakly decomposable $\left(\rightarrow K \notin \mathcal{W}_{n}\right.$)
- ... some more restrictions, eg : at most finitely many facets.

Qstn [SSZ '18] For which K do we have $b(K)=1$?

- Theorem[SSZ '18] If $b(K)=1$, then $K=\Delta$.
\rightarrow proof uses Wulff shape bodies, a pointwise Aleksandrov differentiation lemma, and builds on above restrictions.

A new necessary condition

Let $L \in \mathcal{K}_{n}$ be a k-dimensional. Denote :

$$
\operatorname{Iso}(L):=\frac{1}{k} \frac{\operatorname{Vol}_{k-1}(\partial L)}{\operatorname{Vol}_{k}(L)}=: \frac{1}{k} \frac{|\partial L|}{|L|}
$$

Thm[S. 2022] If $b_{2}(K)=1$, then :
For any facet F of $K: \operatorname{Iso}(F) \leq \operatorname{Iso}(K)$.
\rightarrow recovers the "at most finitely many facets" restriction.

A new necessary condition

Let $L \in \mathcal{K}_{n}$ be a k-dimensional. Denote :

$$
\operatorname{Iso}(L):=\frac{1}{k} \frac{\operatorname{Vol}_{k-1}(\partial L)}{\operatorname{Vol}_{k}(L)}=: \frac{1}{k} \frac{|\partial L|}{|L|}
$$

Thm[S. 2022] If $b_{2}(K)=1$, then, for any affine transform T :

$$
\text { For any facet } F \text { of } K: I s o(T F) \leq I s o(T K)
$$

(since $b_{2}(K)$ is affine invariant, while $\max _{F} \frac{I s o(F)}{\operatorname{lso}(K)}$, is not)

A new necessary condition

Let $L \in \mathcal{K}_{n}$ be a k-dimensional. Denote :

$$
\operatorname{Iso}(L):=\frac{1}{k} \frac{\operatorname{Vol}_{k-1}(\partial L)}{\operatorname{Vol}_{k}(L)}=: \frac{1}{k} \frac{|\partial L|}{|L|}
$$

Thm[S. 2022] If $b_{2}(K)=1$, then, for any affine transform T :

$$
\text { For any facet } F \text { of } K: I s o(T F) \leq I s o(T K)
$$

(since $b_{2}(K)$ is affine invariant, while $\max _{F} \frac{I s o(F)}{\operatorname{lso}(K)}$, is not)

- Question : if $P \neq \Delta$, does there always exist

$$
\text { an affine transform } T \text { s.t. } \max _{F} \frac{\operatorname{Iso}(T F)}{\operatorname{Iso}(T P)}>1 \text { ? }
$$

... any questions?

Thank you for your attention !!

Isoperimetric Inequalities for Hessian Valuations

Jacopo Ulivelli

SAPIENZA
Universitì di Roma
Department of Mathematics Guido Castelnuovo

May 22nd/28th 2022
Workshop in Convexity and High-dimensional probability, Atlanta

Ambient Spaces...

```
\mathcal{K}}\mp@subsup{}{}{n+1}:={\mathrm{ compact convex bodies in }\mp@subsup{\mathbb{R}}{}{n+1} with the topology induced by the Hausdorff distance.
```


Ambient Spaces...

$\mathcal{K}^{n+1}:=\left\{\right.$ compact convex bodies in $\left.\mathbb{R}^{n+1}\right\}$ with the topology induced by the Hausdorff distance.
$\operatorname{Conv}_{s c}\left(\mathbb{R}^{n}\right):=\left\{u: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}\right.$: convex, I.s.c. and proper, $\left.\lim _{|x| \rightarrow \infty} \frac{u(x)}{|x|}=+\infty\right\}$ with the topology induced by epi-convergence:
$u_{j} \rightarrow_{e p i} u$ if

- For every sequence $\left(x_{j}\right)$ that converges to $x, u(x) \leq \liminf _{j \rightarrow \infty} u_{j}\left(x_{j}\right)$.
- There exists a sequence $\left(x_{j}\right)$ converging to x such that $u(x)=\lim _{j \rightarrow \infty} u_{j}\left(x_{j}\right)$.

...and their Valuations

Valuations on \mathcal{K}^{n+1}

Functionals $Y: \mathcal{K}^{n+1} \rightarrow \mathbb{R}$ such that for every $K, L \in \mathcal{K}^{n+1}, K \cup L \in \mathcal{K}^{n+1}$

$$
Y(K \cup L)+Y(K \cap L)=Y(K)+Y(L) .
$$

...and their Valuations

Valuations on \mathcal{K}^{n+1}

Functionals $Y: \mathcal{K}^{n+1} \rightarrow \mathbb{R}$ such that for every $K, L \in \mathcal{K}^{n+1}, K \cup L \in \mathcal{K}^{n+1}$

$$
Y(K \cup L)+Y(K \cap L)=Y(K)+Y(L) .
$$

Valuations on $\operatorname{Conv}_{s c}\left(\mathbb{R}^{n}\right)$

Functionals $Z: \operatorname{Conv}_{s c}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ such that for every $u, v \in \operatorname{Conv}_{s c}\left(\mathbb{R}^{n}\right)$, $u \wedge v \in \operatorname{Conv}_{\mathrm{sc}}\left(\mathbb{R}^{n}\right)$

$$
Z(u \wedge v)+Z(u \vee v)=Z(u)+Z(v) .
$$

[Ludwig, Alesker, Colesanti, Mussnig, Knoerr...]

n-homogeneous valuations on \mathcal{K}^{n+1}

Theorem McMullen, 1980]

A functional $Y: \mathcal{K}^{n+1} \rightarrow \mathbb{R}$ is a continuous, translation invariant real valued valuation which is n-homogeneous, if and only if there exists a continuous function $\eta: \mathbb{S}^{n} \rightarrow \mathbb{R}$ such that

$$
Y(K)=\int_{\mathbb{S}^{n}} \eta(\nu) d S_{n}(K, \nu)
$$

for every $K \in \mathcal{K}^{n+1}$. The function η is uniquely determined up to adding the restriction to \mathbb{S}^{n} of a linear function.

n-homogeneous valuations on $\operatorname{Conv}_{s c}\left(\mathbb{R}^{n}\right)$

Theorem [Colesanti, Ludwig and Mussnig, 2020]

A functional $Z: \operatorname{Conv}_{s c}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ is a continuous and epi-translation invariant valuation that is epi-homogeneous of degree n, if and only if there exists $\zeta \in C_{0}\left(\mathbb{R}^{n}\right)$ such that

$$
Z(u)=\int_{\operatorname{dom}(u)} \zeta(\nabla u(x)) d x
$$

for every $u \in \operatorname{Conv}_{\text {sc }}\left(\mathbb{R}^{n}\right)$.

n-homogeneous valuations on $\operatorname{Conv}_{s c}\left(\mathbb{R}^{n}\right)$

Theorem [Colesanti, Ludwig and Mussnig, 2020]

A functional $Z: \operatorname{Conv}_{s c}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ is a continuous and epi-translation invariant valuation that is epi-homogeneous of degree n, if and only if there exists $\zeta \in C_{0}\left(\mathbb{R}^{n}\right)$ such that

$$
Z(u)=\int_{\operatorname{dom}(u)} \zeta(\nabla u(x)) d x
$$

for every $u \in \operatorname{Conv}_{s c}\left(\mathbb{R}^{n}\right)$.

This result can be proved as a consequence of McMullen's Theorem [Knoerr and U., 2022+]

Are there inequalities for these functionals?

First of all, one needs to work on the family

$$
\operatorname{Conv}_{0}\left(\mathbb{R}^{n}\right):=\left\{u \in \operatorname{Conv}_{s c}\left(\mathbb{R}^{n}\right): \partial \operatorname{dom}(u)=\{u=0\}\right\}
$$

Are there inequalities for these functionals?

First of all, one needs to work on the family

$$
\operatorname{Conv}_{0}\left(\mathbb{R}^{n}\right):=\left\{u \in \operatorname{Conv}_{s c}\left(\mathbb{R}^{n}\right): \partial \operatorname{dom}(u)=\{u=0\}\right\}
$$

- Brunn-Minkowski type inequalities: if and only if ζ is a real valued convex function. Consequence of [Colesanti, Hug and Saorin-Gomez, 2014]. Already studied by [Klartag, 2005].

Are there inequalities for these functionals?

First of all, one needs to work on the family

$$
\operatorname{Conv}_{0}\left(\mathbb{R}^{n}\right):=\left\{u \in \operatorname{Conv}_{s c}\left(\mathbb{R}^{n}\right): \partial \operatorname{dom}(u)=\{u=0\}\right\}
$$

- Brunn-Minkowski type inequalities: if and only if ζ is a real valued convex function. Consequence of [Colesanti, Hug and Saorin-Gomez, 2014]. Already studied by [Klartag, 2005].
- Isoperimetric inequalities: if and only if $\frac{\zeta(x)}{\sqrt{1+|x|^{2}}}$ is bounded away from 0 [Mussnig and U., 2022+].

Are there inequalities for these functionals?

First of all, one needs to work on the family

$$
\operatorname{Conv}_{0}\left(\mathbb{R}^{n}\right):=\left\{u \in \operatorname{Conv}_{s c}\left(\mathbb{R}^{n}\right): \partial \operatorname{dom}(u)=\{u=0\}\right\}
$$

- Brunn-Minkowski type inequalities: if and only if ζ is a real valued convex function. Consequence of [Colesanti, Hug and Saorin-Gomez, 2014]. Already studied by [Klartag, 2005].
- Isoperimetric inequalities: if and only if $\frac{\zeta(x)}{\sqrt{1+|x|^{2}}}$ is bounded away from 0 [Mussnig and U., 2022+].
In both cases we lose the continuity for the corresponding valuations.

The inequality

For $u \in \operatorname{Conv}_{0}\left(\mathbb{R}^{n}\right)$ we define

$$
V_{n, \zeta}(u):=\int_{\operatorname{dom}(u)} \zeta(\nabla u(x)) d x, \quad V_{n+1}(u):=\int_{\operatorname{dom}(u)}|u(x)| d x
$$

Theorem (Mussnig and U., 2022+)

If $\zeta \in C\left(\mathbb{R}^{n}\right), \zeta(x) \geq c \sqrt{1+|x|^{2}}, c>0$, then

$$
V_{n, \zeta}(u)^{\frac{1}{n}} \geq C(n, \zeta) V_{n+1}(u)^{\frac{1}{n+1}}
$$

for every $u \in \operatorname{Conv}_{0}\left(\mathbb{R}^{n}\right)$.
Hint of proof: Many changes of variables and Wulff's inequality

THANKS FOR YOUR ATTENTION!

Potential Theory with Multivariate Kernels

Damir Ferizović
Department of Mathematics
KU Leuven

KULEUVEN

History

In 1904, physicist and Nobel Prize winner J. Thomson worked on a model of the atom - this led to the question: which configuration of electrons on a spherical shell would minimize electrostatic potential energy. Known configurations for $N \in\{1,2,3,4,5,6,12\}$.

Coulomb Potential: Given a point set $\omega_{N}:=\left\{x_{1}, \ldots, x_{N}\right\}$ on the sphere, minimize

$$
\sum_{j \neq s} \frac{1}{\left\|x_{j}-x_{s}\right\|}
$$

Riesz potential

Let $K: \Omega \times \Omega \rightarrow \mathbb{R} \cup\{\infty\}$ where $\Omega=\mathbb{T}^{2}, K(x, y)=f(\|x-y\|)$ and

$$
f(r)=r^{-\alpha} .
$$

* Borodachov, Hardin and Saff: "Discrete Energy on Rectifiable Sets" (2019).

Generalization

Let $\omega_{N}:=\left\{x_{1}, \ldots, x_{N}\right\} \subset(\Omega, d)$, with Ω compact and infinite, and $K: \Omega \times \Omega \rightarrow \mathbb{R} \cup\{\infty\}$, investigate

$$
E_{K}\left[\omega_{N}\right]=\sum_{j \neq s} K\left(x_{j}, x_{s}\right) .
$$

Lemma. Let $N>1$, then for arbitrary K

$$
\frac{\inf _{\omega_{N}} E_{K}\left[\omega_{N}\right]}{N(N-1)} \nearrow C \in \mathbb{R} \cup\{\infty\} .
$$

Proof. For fixed $x_{j} \in \omega_{N+1}$

$$
E_{K}\left[\omega_{N+1}\right]=E_{K}\left[\omega_{N+1} \backslash\left\{x_{j}\right\}\right]+\sum_{s=1, s \neq j}^{N+1} K\left(x_{j}, x_{s}\right)+K\left(x_{s}, x_{j}\right),
$$

and summing up over j

$$
(N+1) E_{K}\left[\omega_{N+1}\right] \geq(N+1) \inf _{\omega_{N}} E_{K}\left[\omega_{N}\right]+2 E_{K}\left[\omega_{N+1}\right] .
$$

Example: Green kernel

Let $(\Omega, d)=(M, g)$ a closed Riemannian manifold, and \mathcal{G} the normalized Green function for the Laplace-Beltrami operator; set

$$
K(x, y)=\mathcal{G}(x, y)
$$

Theorem. For $M=\mathrm{SO}(3)$, we have

$$
-3 \pi^{1 / 3} N^{4 / 3} \leq \inf _{\omega_{N} \subset \operatorname{SO}(3)} E_{\mathcal{G}}\left(\omega_{N}\right)+O(N) \leq-4\left(\frac{3}{4}\right)^{4 / 3} N^{4 / 3}
$$

^ Beltrán \& DF: "Approximation to uniform distribution in SO(3)", Constr Approx 52 (2020).

Uniform distribution

Theorem. For a compact Riemannian manifold (M, g) with $\operatorname{dim}(M)>1$, let G be its normalized Green function, then

$$
I_{G}(\lambda)=\inf _{\mu \in \mathbb{P}(M)} I_{G}(\mu)=\inf _{\mu \in \mathbb{P}(M)} \iint_{M} G(x, y) \mathrm{d} \mu(x) \mathrm{d} \mu(y)
$$

where λ is the uniform measure on M. Minimizing point sets ω_{N} for the Green energy satisfy

$$
\omega_{N} \xrightarrow{w *} \lambda .
$$

^ Beltrán, Corral, Criado Del Rey: "Discrete and continuous Green energy on compact manifolds" Journal of Approximation Theory (2019).

Generalization II

A kernel $K: \Omega^{2} \rightarrow \mathbb{R}$ is called positive definite if for every finite signed Borel measure $\mu \in \mathcal{M}(\Omega)$

$$
I_{K}(\mu)=\iint_{\Omega} K(x, y) \mathrm{d} \mu(x, y) \geq 0 .
$$

It is called conditionally positive definite if

$$
I_{K}(\mu) \geq 0
$$

for all $\mu \in \mathcal{M}(\Omega)$ with

$$
\mu(\Omega)=0 .
$$

(One assumes the integrals to make sense.) Sum, limit, and product of PD kernels is again PD.

Convexity of I_{K}

Lemma. (BHS p.135) Let K be symmetric, lower semi-continuous, and conditionally positive definite. Given $\mu, \nu \in \mathbb{P}(\Omega)$ with

$$
I_{K}(\mu), I_{K}(\nu)<\infty,
$$

then

$$
2 I_{K}(\mu, \nu) \leq I_{K}(\mu)+I_{K}(\nu)
$$

where

$$
I_{K}(\mu, \nu)=\iint K(x, y) \mathrm{d} \mu(x) \mathrm{d} \nu(y) .
$$

Corollary.

$$
I_{K}(t \mu+(1-t) \nu) \leq t I_{K}(\mu)+(1-t) I_{K}(\nu) .
$$

^ Bilyk, Matzke, Vlasiuk: "Positive definiteness and the Stolarsky invariance principle." arXiv (2021).

Multivariate kernels in Applications

Axilrod-Teller Potential. Let the angle between vectors x, y be denoted by $a(x, y)$

$$
K(x, y, z)=\frac{1+3 a(x, y) a(y, z) a(x, z)}{d(x, y)^{3} d(y, z)^{3} d(x, z)^{3}} .
$$

\star Axilrod, Teller: "Interaction of the van der Waals Type Between Three Atoms", Journal of Chemical Physics. 11 (1943).

Menger Curvature. Let $A(x, y, z)$ be the area of the triangle, spanned by x, y, z.

$$
c(x, y, z)=\frac{4 A(x, y, z)}{d(x, y) d(y, z) d(x, z)}
$$

Stillinger-Weber Potential.

* Stillinger, Weber: "Computer simulation of local order in condensed phases of silicon", Physical Review B. 31 (1985).

Investigated and used for

Kissing Numbers.

* Bachoc, Vallentin: "New Upper Bounds for Kissing Numbers from Semidefinite Programming", Journal of the American Mathematical Society 21 (3) (2008).

Energy Minimization.

\star Cohn, Woo: "Three-Point Bounds for Energy Minimization", Journal of the AMS (25) 4 (2012).

* Bilyk, DF, Glazyrin, Matzke, Park, Vlasiuk: "Potential theory with multivariate kernels", Math Z (2022).

Generalization III

A real-valued, symmetric, and continuous kernel K will be called (conditionally) 3-positive definite, if for any fixed $z \in \Omega$, it holds for

$$
G_{z}(x, y):=K(x, y, z)
$$

Sum, limit, and product of PD kernels is again PD.

Corollary. $H(x, y)=\int K(x, y, z) \mathrm{d} \mu(z)$ is (conditionally) positive definite, if K is.

Lemma. Let $2 \leq m \leq n-1$, and suppose $H: \Omega^{m} \rightarrow \mathbb{R}$ is continuous, symmetric, and conditionally m-positive definite. Then

$$
K\left(z_{1}, \ldots, z_{n}\right):=\sum_{1 \leq j_{1}<j_{2}<\cdots<j_{m} \leq n} H\left(z_{j_{1}}, z_{j_{2}}, \ldots, z_{j_{m}}\right)
$$

is conditionally n-positive definite.

Some results

Lemma. Suppose K is symmetric, continuous, and (conditionally) PD, then for $\mu_{j} \in \mathbb{P}(\Omega)$

$$
I_{K}\left(\mu_{1}, \ldots, \mu_{n}\right) \leq \frac{1}{n} \sum_{j=1}^{n} I_{K}\left(\mu_{j}\right) .
$$

Corollary. I_{K} is convex.

Now let $\Omega=\mathbb{S}^{2}$, and K be rotationally invariant, i.e. have the form

$$
K\left(x_{1}, \ldots, x_{n}\right)=F\left(\left(\left\langle x_{i}, x_{j}\right\rangle\right)_{i, j=1}^{n}\right) .
$$

Some results II

Theorem. Suppose that $K:\left(\mathbb{S}^{2}\right)^{n} \rightarrow \mathbb{R}$ is continuous, symmetric, rotationally invariant, and conditionally n-positive definite on \mathbb{S}^{2}. Then σ is a minimizer of I_{K} over $\mathbb{P}\left(\mathbb{S}^{2}\right)$.

We will write $K(x, y, z)=F(u, v, t)$ where

$$
u=\langle x, y\rangle, \quad v=\langle z, y\rangle, \quad t=\langle x, z\rangle .
$$

Corollary. Let $f:[-1,1] \rightarrow \mathbb{R}$ be a real-analytic function with nonnegative Maclaurin coefficients and let $F(u, v, t)=f(u v t)$. Then the uniform surface measure σ minimizes the energy I_{K} over $\mathbb{P}\left(\mathbb{S}^{2}\right)$.

Thank you for your Time

Minimizing p-Frame Energies and Mixed Volumes

Ryan W. Matzke

Technische Universität Graz

The research in this presentation is in collaboration with Dmitriy Bilyk, Alexey Glazyrin, Josiah Park, and Oleksandr Vlasiuk.

Energy on the Sphere

Let \mathbb{S}^{d-1} be the unit sphere in \mathbb{R}^{d}. Given a continuous (potential) function $F:[-1,1] \rightarrow \mathbb{R}$, the (discrete) energy of a configuration (multiset) $\omega_{N}=\left\{z_{1}, \ldots, z_{N}\right\} \subset \mathbb{S}^{d-1}$ is

$$
E_{F}\left(\omega_{N}\right)=\frac{1}{N^{2}} \sum_{i, j=1}^{N} F\left(\left\langle z_{i}, z_{j}\right\rangle\right),
$$

and the (continuous) energy of a probability measure $\mu \in \mathbb{P}\left(\mathbb{S}^{d-1}\right)$ is

$$
I_{F}(\mu)=\int_{\mathbb{S}^{d}-1} \int_{\mathbb{S}^{d}-1} F(\langle x, y\rangle) d \mu(x) d \mu(y)
$$

- What is the mimimal energy (for fixed N for E_{F})?
- Is the uniform measure σ a minimizer of I_{F} ? Is the support of any minimizer of a lower dimension? Discrete?
- Are minimizers of E_{F} uniformly distributed? Well-separated? Do they concentrate and form "clumps"? What happens as $N \rightarrow \infty$?

Energy on the Sphere

Let \mathbb{S}^{d-1} be the unit sphere in \mathbb{R}^{d}. Given a continuous (potential) function $F:[-1,1] \rightarrow \mathbb{R}$, the (discrete) energy of a configuration (multiset) $\omega_{N}=\left\{z_{1}, \ldots, z_{N}\right\} \subset \mathbb{S}^{d-1}$ is

$$
E_{F}\left(\omega_{N}\right)=\frac{1}{N^{2}} \sum_{i, j=1}^{N} F\left(\left\langle z_{i}, z_{j}\right\rangle\right),
$$

and the (continuous) energy of a probability measure $\mu \in \mathbb{P}\left(\mathbb{S}^{d-1}\right)$ is

$$
I_{F}(\mu)=\int_{\mathbb{S}^{d-1}} \int_{\mathbb{S}^{d-1}} F(\langle x, y\rangle) d \mu(x) d \mu(y)
$$

- If $\mu_{\omega_{N}}=\frac{1}{N} \sum_{j=1}^{N} \delta_{z j}$, then

$$
I_{F}\left(\mu_{\omega_{N}}\right)=\frac{1}{N^{2}} \sum_{i, j=1}^{N} F\left(\left\langle z_{i}, z_{j}\right\rangle\right)=E_{F}\left(\omega_{N}\right)
$$

- The weak* density of the linear span of Dirac masses in $\mathbb{P}\left(\mathbb{S}^{d-1}\right)$ gives

$$
\lim _{N \rightarrow \infty} \min _{\omega_{N} \subset \mathbb{S}^{d-1}} E_{F}\left(\omega_{N}\right)=\inf _{\mu \in \mathbb{P}\left(\mathbb{S}^{d-1}\right)} I_{F}(\mu)
$$

Riesz s-energies

For $s \in \mathbb{R}$, we define the Riesz kernel as

$$
R_{s}(\langle x, y\rangle)= \begin{cases}\frac{1}{\|x-y\|^{s}} & s>0 \\ -\log (\|x-y\|) & s=0 \\ -\|x-y\|^{-s} & s<0\end{cases}
$$

Coulomb $(s=d-2)$, Logarithmic $(s=0)$, Euclidean distance $(s=-1)$.

Theorem (Björck, 1956)

The minimizers of $I_{R_{s}}$ are

- σ (uniquely) if $-2<s<d$
- Any measure with center of mass at the origin if $s=-2$
- Any measure of the form $\frac{1}{2}\left(\delta_{p}+\delta_{-p}\right)$ if $s<-2$.

Theorem (Classical; Götz, Hardin, Kuijlaars, Saff)

If $s>-2$, the minimizers of $E_{R_{s}}$ are uniformly distributed on the sphere.

p-Frame Energy

Stronger repulsion tends to lead to minimizers "spreading out" while weaker repulsion leads to the support concentrating.

Theorem (Carillo, Figalli, Patacchini, 2017)

Suppose $F(\langle x, y\rangle)=G(\|x-y\|)$ and $G^{\prime}(t) \sim-t^{\alpha-1}$ as $t \rightarrow 0$ for some $\alpha>2$. If μ is a minimizer of I_{F}, then μ has discrete (finite) support.

For $p \in(0, \infty)$, we define the p-frame potential as

$$
F_{p}(\langle x, y\rangle)=|\langle x, y\rangle|^{p} .
$$

Minimizing this energy for $p=2$ results in tight frames/isotropic measures and for $p=4$ (in the complex setting) results in symmetric information complete positive operator-valued measures (SIC-POVM's).

Since $|\langle x, y\rangle|^{p}=1-\frac{p}{2}\|x-y\|^{2}+\mathbf{O}\left(\|x-y\|^{4}\right)$, it falls into the limit case $\alpha=2$. We might expect the types of minimizers to vary with p.

p-Frame Energy

Theorem (Bilyk, Glazyrin, Matzke, Park, Vlasiuk, 2021)

If $p \in 2 \mathbb{N}, \sigma$ is a minimizer of $I_{F_{p}}$. If $p \notin 2 \mathbb{N}$ and μ is a minimizer, then $(\operatorname{supp}(\mu))^{\circ}=\emptyset$.

Conjecture (Bilyk, Glazyrin, Matzke, Park, Vlasiuk)

If $p \notin 2 \mathbb{N}$, then the minimizers of the p-frame energy are discrete.

Theorem (Bilyk, Glazyrin, Matzke, Park, Vlasiuk, 2022)

If C is a tight $(2 m+1)$-design on \mathbb{S}^{d-1} and $p \in(2 m-2,2 m)$, then $\mu=\frac{1}{\# C} \sum_{x \in C} \delta_{x}$ is a minimizer of $I_{F_{p}}$. Moreover, when this happens, all minimizers of $I_{F_{p}}$ are discrete.

Tight Designs

A spherical k-design is a set of points $\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{S}^{d-1}$ such that

$$
\int_{\mathbb{S}^{d-1}} q(x) d \sigma(x)=\frac{1}{N} \sum_{i=1}^{N} q\left(x_{i}\right)
$$

for all polynomials q on \mathbb{R}^{d} of degree at most k. A spherical $(2 m+1)$-design is tight if it is centrally symmetric and there are $m+2$ inner products between its points.

d	$\|C\|$	p-range	Configuration
d	$2 d$	$(0,2)$	cross polytope
2	$2 k$	$(2 k-4,2 k-2)$	$2 k$-gon
3	12	$(2,4)$	icosahedron
7	56	$(2,4)$	kissing configuration
8	240	$(4,6)$	E_{8} roots
23	552	$(2,4)$	equiangular lines
23	4600	$(4,6)$	kissing configuration
24	196560	$(8,10)$	Leech lattice

L^{p}-mixed Volumes

Let $C \subset \mathbb{R}^{d}$ be a convex body,

$$
\sigma_{C}(B)=\left|\left\{x \in \partial C: n_{x} \in B\right\}\right|_{d-1}
$$

for all Borel $B \subseteq \mathbb{S}^{d-1}$, and h_{C} be the support function of C

$$
h_{C}(y)=\sup _{x \in C}\langle x, y\rangle .
$$

Given two convex bodies, C and D, and $p \geq 1$, we define the L^{p}-mixed volume of the two to be

$$
V_{p}(C, D)=\frac{p}{d} \lim _{\varepsilon \rightarrow 0} \frac{\left|C+_{p} \varepsilon D\right|_{d}-|C|_{d}}{\varepsilon}=\frac{1}{d} \int_{\mathbb{S}^{d}-1} h_{D}(x)^{p} h_{C}(x)^{1-p} d \sigma_{C}(x)
$$

where $C+_{p} \varepsilon D$ is the convex body with support function

$$
h_{C+p}(x)=\sqrt[p]{h_{C}(x)^{p}+\varepsilon h_{D}(x)^{p}}
$$

Mixed Volumes with Projection Bodies

The L^{p}-projection body of $C, \Pi_{p} C$, is the origin-symmetric convex body with support function

$$
h_{\Pi_{p} C}(x)=\left(c_{d, p} \int_{\mathbb{S}^{d-1}}|\langle x, y\rangle|^{p} h_{C}(x)^{1-p} d \sigma_{C}(x)\right)^{\frac{1}{p}} .
$$

Defining $\sigma_{C, p}$ such that $d \sigma_{C, p}(x)=h_{C}(x)^{1-p} d \sigma_{C}(x)$, we see that

$$
\begin{aligned}
I_{F_{p}}\left(\sigma_{C, p}\right) & =\iint_{\mathbb{S}^{d-1} \times \mathbb{S}^{d-1}}|\langle x, y\rangle|^{p} d \sigma_{C, p}(x) d \sigma_{C, p}(y) \\
& =\frac{1}{c_{d, p}} \int_{\mathbb{S}^{d-1}} h_{\Pi_{p} C}(x)^{p} h_{C}(x)^{1-p} d \sigma_{C}(x)=\frac{d}{c_{d, p}} V_{p}\left(C, \Pi_{p} C\right)
\end{aligned}
$$

Thus, minimizing the p-frame energy (over admissible measures) is the same as minimizing $V_{p}\left(C, \Pi_{p} C\right)$ over all symmetric convex bodies C (scaled to satisfy $\sigma_{C, p}\left(\mathbb{S}^{d-1}\right)=1$).

Proposition (Bilyk, Glazyrin, Matzke, Park, Vlasiuk, 2022)

The quantity $\frac{V_{1}\left(C, \Pi_{1} C\right)}{|\partial C|_{d-1}^{2}}$ is minimized if and only if C is a hypercube.

Minimizing p-Frame Energies and Mixed Volumes

Thank you!

${ }^{0}$ This work was in collaboration with Dmitriy Bilyk, Alexey Glazyrin, Josiah Park, and Oleksandr Vlasiuk, and was supported in part by the National Science Foundation Graduate Research Fellowship Grant 00039202.

