## About Bezout inequalities for mixed volumes

M. Szusterman,

Université de Paris

May 2022

Workshop in Convexity and higher-dimensional probability, Atlanta

## Mixed volume : Minkowski's definition

Denote by  $\mathcal{K}_n = \{ \mathcal{K} \subset \mathbb{R}^n : \mathcal{K} \text{ compact convex set} \}.$ 

Let  $K, L \in \mathcal{K}_n$  . Then  $Vol_n(\lambda K + \mu L)$  is a polynomial in  $(\lambda, \mu)$  :

$$Vol_n(\lambda K + \mu L) = \sum_{k=0}^n \binom{n}{k} v_k \lambda^k \mu^{n-k}$$

where  $v_k = V_n(K[k], L[n-k]) = V_n(K, ..., K, L, ..., L)$  are called mixed volumes.

## Mixed volume : Minkowski's definition

► Let 
$$K, L \in \mathcal{K}_n$$
. Then  $Vol_n(\lambda K + \mu L) = \sum_{k=0}^n {n \choose k} v_k \lambda^k \mu^{n-k}$   
► Let  $K_1, ..., K_m \in \mathcal{K}_n$ . Then :

$$Vol_n(\lambda_1 K_1 + \dots + \lambda_m K_m) = \sum_{\substack{a=(a_1,\dots,a_m)\\|a|=n}} \binom{n}{a} v_a \lambda^a$$

where  $v_a = V_n(K_1[a_1], \ldots, K_m[a_m])$  are called mixed volumes.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

#### Mixed volume : Minkowski's definition

▶ Let  $K, L \in \mathcal{K}_n$ . Then  $Vol_n(\lambda K + \mu L) = \sum_{k=0}^n {n \choose k} v_k \lambda^k \mu^{n-k}$ ▶ Let  $K_1, ..., K_m \in \mathcal{K}_n$ . Then :

$$Vol_n(\lambda_1 K_1 + \dots + \lambda_m K_m) = \sum_{\substack{a=(a_1,\dots,a_m)\|a|=n}} \binom{n}{a} v_a \lambda^a$$

where  $v_a = V_n(K_1[a_1], \dots, K_m[a_m])$  are called mixed volumes.  $V_n : \mathcal{K}_n^n \to [0, +\infty)$  is a multilinear, continuous functional.

Let  $T : \mathbb{R}^n \to \mathbb{R}^n$  be an affine transform. Then :

$$V_n(TK_1, ..., TK_n) = det(T)V_n(K_1, ..., K_n)$$

## Bezout inequality

Let  $f_1, ..., f_r : \mathbb{R}^n \to \mathbb{R}$  be polynomials. Denote by  $X_1, ..., X_r$  the associated algebraic varieties  $(X_i := \{x \in \mathbb{R}^n : f_i(x) = 0\}).$ 

The Bezout inequality states that :

$$deg(X_1 \cap ... \cap X_r) \leq \prod deg(X_i)$$
 [B]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

## Bezout inequality

Let  $f_1, ..., f_r : \mathbb{R}^n \to \mathbb{R}$  be polynomials. Denote by  $X_1, ..., X_r$  the associated algebraic varieties .

The Bezout inequality states that :

$$deg(X_1 \cap ... \cap X_r) \leq \prod deg(X_i)$$
 [B]

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Denote by  $P_1, ..., P_r$  the Newton polytopes of  $f_1, ..., f_r$ 

#### Bezout inequality

Let  $f_1, ..., f_r : \mathbb{R}^n \to \mathbb{R}$  be polynomials. Denote by  $X_1, ..., X_r$  the associated algebraic varieties .

The Bezout inequality states that :

$$deg(X_1 \cap ... \cap X_r) \leq \prod deg(X_i)$$
 [B]

Denote by  $P_1, ..., P_r$  the Newton polytopes of  $f_1, ..., f_r$ 

We can reformulate [B] within the language of mixed volumes :

$$V(P_1,...,P_r,\Delta[n-r])V(\Delta)^{r-1} \leq \prod_{i=1}^r V(P_i,\Delta[n-1])$$

thanks to a theorem by Bernstein, Kushnirenko and Khovanskii.

## Bezout inequality (again)

Let  $f_1, ..., f_n : \mathbb{R}^n \to \mathbb{R}$  be polynomials. Let  $X = X_2 \cap ... \cap X_n$  of dimension 1, and  $Y = X_1$  (codim.1). Then Bezout inequality :

$$deg(X \cap Y) \le deg(X)deg(Y)$$
 [B]

translates to

$$V_n(P_1,...,P_n)V_n(\Delta) \leq V_n(P_2,...,P_n,\Delta)V_n(P_1,\Delta[n-1]).$$

(which allows to recover previous inequality [B])

## Relaxed Bezout inequality

• for the *n*-simplex  $\Delta$  :

$$V(L_1,...,L_n)V(\Delta) \leq V(L_2,...,L_n,\Delta)V(L_1,\Delta[n-1]).$$

Thanks to Diskant inequality, J. Xiao has shown (2019) :

$$V(L_1,...,L_n)V(K) \leq nV(L_2,...,L_n,K)V(L_1,K[n-1])$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for any convex bodies  $L_1, ..., L_n$ , and for any K.

#### Bezout constants

We define :

$$b_{2}(K) = \max_{L_{1},L_{2}} \frac{V(L_{1},L_{2},K[n-2])V(K)}{V(L_{1},K[n-1])V(L_{2},K[n-1])} \geq 1$$

And similarly

$$b(K) = \max_{L_1,...,L_n} \frac{V(L_1,...,L_n)V(K)}{V(L_2,...,L_n,K)V(L_1,K[n-1])} \geq 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

So that :

$$\blacktriangleright \ b_2(\Delta) = b(\Delta) = 1 ;$$

- $\blacktriangleright \forall K, 1 \leq \frac{b_2}{K} \leq \frac{b(K)}{K};$
- by [Diskant, Xiao] :  $\max_{K} b(K) \leq n$ .
- ►  $\forall K$ , b(TK) = b(K), for any (full-rank) affine T.

Question [SZ '15]

For which bodies do we have  $b_2(K) = 1$ ?

Question [SSZ '18]

For which bodies do we have b(K) = 1?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

SZ '15  $\rightarrow$  [Soprunov, Zvavitch] (2015) SSZ '18  $\rightarrow$  [Saroglou, Soprunov, Zvavitch] (2018)

**Qstn** [SZ '15] For which K, do we have  $b_2(K) = 1$ ?

**Qstn** [SSZ '18] For which K do we have b(K) = 1?

• **Theorem**[SSZ '18] If b(K) = 1, then  $K = \Delta$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

**Qstn** [SZ '15] For which K, do we have  $b_2(K) = 1$ ?

**Qstn** [SSZ '18] For which K do we have b(K) = 1 ?

- **Theorem**[SSZ '18] If b(K) = 1, then  $K = \Delta$ .
- ▶ this doesn't close former question, since  $b_2(K) \le b(K)$ .

**Qstn** [SZ '15] For which K, do we have  $b_2(K) = 1$ ?

• **Theorem**[SSZ '18] .If  $b_2(P) = 1$ , then  $P = \Delta$ . (where *P* is an *n*-polytope)

**Qstn** [SSZ '18] For which K do we have b(K) = 1?

• **Theorem**[SSZ '18] If b(K) = 1, then  $K = \Delta$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

**Qstn** [SZ '15] For which K, do we have  $b_2(K) = 1$ ?

- **Theorem**[SSZ '18] .If  $b_2(P) = 1$ , then  $P = \Delta$ . (where *P* is an *n*-polytope)
- ▶ **Prop**[SZ '15] if  $b_2(K) = 1$ , then  $K \neq A + B$  (with  $A \neq B$ ) (*K* cannot be decomposable)

**Qstn** [SSZ '18] For which K do we have b(K) = 1 ?

• **Theorem**[SSZ '18] If b(K) = 1, then  $K = \Delta$ .

**Qstn** [SZ '15] For which K, do we have  $b_2(K) = 1$ ?

- ▶ Thm[SSZ '18] Let  $P \in \mathbf{Poly}_n$ . Then  $\mathbf{b_2}(P) = 1 \Rightarrow P = \Delta$ .
- ▶ Thm['15, '18] if  $b_2(K) = 1$ , then K cannot be weakly decomposable (  $\rightarrow K \notin W_n$ )

**Qstn** [SSZ '18] For which K do we have b(K) = 1 ?

• **Theorem**[SSZ '18] If b(K) = 1, then  $K = \Delta$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

**Qstn** [SZ '15] For which K, do we have  $b_2(K) = 1$ ?

- ▶ Thm[SSZ '18] Let  $P \in \mathbf{Poly}_n$ . Then  $\mathbf{b_2}(P) = 1 \Rightarrow P = \Delta$ .
- ▶ Thm['15, '18] if  $b_2(K) = 1$ , then K cannot be weakly decomposable (  $\rightarrow K \notin W_n$ )

 $\rightarrow$  excludes bodies with (somewhere) smooth boundary.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

**Qstn** [SSZ '18] For which K do we have b(K) = 1 ?

• **Theorem**[SSZ '18] If b(K) = 1, then  $K = \Delta$ .

**Qstn** [SZ '15] For which K, do we have  $b_2(K) = 1$ ?

- ▶ Thm[SSZ '18] Let  $P \in \mathbf{Poly}_n$ . Then  $b_2(P) = 1 \Rightarrow P = \Delta$ .
- ▶ Thm['15, '18] if  $b_2(K) = 1$ , then K cannot be weakly decomposable (  $\rightarrow K \notin W_n$ )

 $\longrightarrow$  recovers characterization among polytopes, since  $\mathbf{Poly}_n \cap \mathcal{W}_n = \mathbf{Poly}_n \setminus \{\Delta\}.$ 

**Qstn** [SSZ '18] For which K do we have b(K) = 1 ?

• **Theorem**[SSZ '18] If b(K) = 1, then  $K = \Delta$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

**Qstn** [SZ '15] For which K, do we have  $b_2(K) = 1$ ?

- ▶ Thm[SSZ '18] Let  $P \in \mathbf{Poly}_n$ . Then  $\mathbf{b_2}(P) = 1 \Rightarrow P = \Delta$ .
- ▶ Thm['15, '18] if  $b_2(K) = 1$ , then K cannot be weakly decomposable (  $\rightarrow K \notin W_n$ )

... some more restrictions, eg : at most finitely many facets.

**Qstn** [SSZ '18] For which K do we have b(K) = 1 ?

• **Theorem**[SSZ '18] If b(K) = 1, then  $K = \Delta$ .

 $\rightarrow$  proof uses Wulff shape bodies, a pointwise Aleksandrov differentiation lemma, and builds on above *restrictions*.

## A new necessary condition

Let  $L \in \mathcal{K}_n$  be a *k*-dimensional. Denote :

$$lso(L) := \frac{1}{k} \frac{Vol_{k-1}(\partial L)}{Vol_k(L)} =: \frac{1}{k} \frac{|\partial L|}{|L|}$$

**Thm**[S. 2022] If  $b_2(K) = 1$ , then :

For any facet F of K :  $Iso(F) \leq Iso(K)$ .

 $\rightarrow$  recovers the "at most finitely many facets" restriction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### A new necessary condition

Let  $L \in \mathcal{K}_n$  be a *k*-dimensional. Denote :

$$lso(L) := \frac{1}{k} \frac{Vol_{k-1}(\partial L)}{Vol_k(L)} =: \frac{1}{k} \frac{|\partial L|}{|L|}$$

**Thm**[S. 2022] If  $b_2(K) = 1$ , then, for any affine transform T:

For any facet F of K :  $Iso(TF) \leq Iso(TK)$ .

(since  $b_2(K)$  is affine invariant, while  $\max_F \frac{Iso(F)}{Iso(K)}$ , is not)

#### A new necessary condition

Let  $L \in \mathcal{K}_n$  be a *k*-dimensional. Denote :

$$lso(L) := \frac{1}{k} \frac{Vol_{k-1}(\partial L)}{Vol_k(L)} =: \frac{1}{k} \frac{|\partial L|}{|L|}$$

**Thm**[S. 2022] If  $b_2(K) = 1$ , then, for any affine transform T:

For any facet F of K :  $Iso(TF) \leq Iso(TK)$ .

(since  $b_2(K)$  is affine invariant, while  $\max_F \frac{Iso(F)}{Iso(K)}$ , is not)

• Question : if  $P \neq \Delta$ , does there always exist

an affine transform 
$$T$$
 s.t.  $\max_{F} \frac{Iso(TF)}{Iso(TP)} > 1$  ?

## ... any questions ?

Thank you for your attention !!



## Isoperimetric Inequalities for Hessian Valuations

## Jacopo Ulivelli



Department of Mathematics Guido Castelnuovo

May 22nd/28th 2022 Workshop in Convexity and High-dimensional probability, Atlanta  $\mathcal{K}^{n+1} := \{ \text{ compact convex bodies in } \mathbb{R}^{n+1} \}$ with the topology induced by the Hausdorff distance.  $\mathcal{K}^{n+1} := \{ \text{ compact convex bodies in } \mathbb{R}^{n+1} \}$ with the topology induced by the Hausdorff distance.

 $\operatorname{Conv}_{sc}(\mathbb{R}^n) := \{ u : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\} : \text{convex, l.s.c. and proper, } \lim_{|x|\to\infty} \frac{u(x)}{|x|} = +\infty \}$ with the topology induced by *epi*-convergence:  $u_j \to_{epi} u$  if

- For every sequence  $(x_j)$  that converges to x,  $u(x) \leq \liminf_{j\to\infty} u_j(x_j)$ .
- There exists a sequence  $(x_j)$  converging to x such that  $u(x) = \lim_{j\to\infty} u_j(x_j)$ .

## ...and their Valuations

### Valuations on $\mathcal{K}^{n+1}$

Functionals  $Y : \mathcal{K}^{n+1} \to \mathbb{R}$  such that for every  $K, L \in \mathcal{K}^{n+1}, K \cup L \in \mathcal{K}^{n+1}$ 

$$Y(K \cup L) + Y(K \cap L) = Y(K) + Y(L).$$

## ...and their Valuations

## Valuations on $\mathcal{K}^{n+1}$

Functionals  $Y : \mathcal{K}^{n+1} \to \mathbb{R}$  such that for every  $K, L \in \mathcal{K}^{n+1}, K \cup L \in \mathcal{K}^{n+1}$ 

$$Y(K \cup L) + Y(K \cap L) = Y(K) + Y(L).$$

#### Valuations on $Conv_{sc}(\mathbb{R}^n)$

Functionals  $Z : \operatorname{Conv}_{sc}(\mathbb{R}^n) \to \mathbb{R}$  such that for every  $u, v \in \operatorname{Conv}_{sc}(\mathbb{R}^n)$ ,  $u \wedge v \in \operatorname{Conv}_{sc}(\mathbb{R}^n)$  $Z(u \wedge v) + Z(u \vee v) = Z(u) + Z(v)$ .

## Theorem [McMullen, 1980]

A functional  $Y : \mathcal{K}^{n+1} \to \mathbb{R}$  is a continuous, translation invariant real valued valuation which is *n*-homogeneous, if and only if there exists a continuous function  $\eta : \mathbb{S}^n \to \mathbb{R}$  such that

$$Y(K) = \int_{\mathbb{S}^n} \eta(\nu) dS_n(K, \nu)$$

for every  $K \in \mathcal{K}^{n+1}$ . The function  $\eta$  is uniquely determined up to adding the restriction to  $\mathbb{S}^n$  of a linear function.

#### Theorem[Colesanti, Ludwig and Mussnig, 2020]

A functional  $Z : \operatorname{Conv}_{sc}(\mathbb{R}^n) \to \mathbb{R}$  is a continuous and epi-translation invariant valuation that is epi-homogeneous of degree n, if and only if there exists  $\zeta \in C_0(\mathbb{R}^n)$  such that

$$Z(u) = \int_{\mathrm{dom}(u)} \zeta(\nabla u(x)) dx$$

for every  $u \in Conv_{sc}(\mathbb{R}^n)$ .

### Theorem[Colesanti, Ludwig and Mussnig, 2020]

A functional  $Z : \operatorname{Conv}_{sc}(\mathbb{R}^n) \to \mathbb{R}$  is a continuous and epi-translation invariant valuation that is epi-homogeneous of degree n, if and only if there exists  $\zeta \in C_0(\mathbb{R}^n)$  such that

$$Z(u) = \int_{\mathrm{dom}(u)} \zeta(\nabla u(x)) dx$$

for every  $u \in Conv_{sc}(\mathbb{R}^n)$ .

This result can be proved as a consequence of McMullen's Theorem [Knoerr and U., 2022+]

## Are there inequalities for these functionals?

First of all, one needs to work on the family

$$\operatorname{Conv}_0(\mathbb{R}^n) := \{ u \in \operatorname{Conv}_{sc}(\mathbb{R}^n) : \partial \operatorname{dom}(u) = \{ u = 0 \} \}.$$

## Are there inequalities for these functionals?

First of all, one needs to work on the family

```
\operatorname{Conv}_0(\mathbb{R}^n) := \{ u \in \operatorname{Conv}_{sc}(\mathbb{R}^n) : \partial \operatorname{dom}(u) = \{ u = 0 \} \}.
```

 Brunn-Minkowski type inequalities: if and only if ζ is a real valued convex function. Consequence of [Colesanti, Hug and Saorin-Gomez, 2014]. Already studied by [Klartag, 2005]. First of all, one needs to work on the family

```
\operatorname{Conv}_0(\mathbb{R}^n) := \{ u \in \operatorname{Conv}_{sc}(\mathbb{R}^n) : \partial \operatorname{dom}(u) = \{ u = 0 \} \}.
```

- Brunn-Minkowski type inequalities: if and only if ζ is a real valued convex function. Consequence of [Colesanti, Hug and Saorin-Gomez, 2014]. Already studied by [Klartag, 2005].
- Isoperimetric inequalities: if and only if  $\frac{\zeta(x)}{\sqrt{1+|x|^2}}$  is bounded away from 0 [Mussnig and U., 2022+].

First of all, one needs to work on the family

```
\operatorname{Conv}_0(\mathbb{R}^n) := \{ u \in \operatorname{Conv}_{sc}(\mathbb{R}^n) : \partial \operatorname{dom}(u) = \{ u = 0 \} \}.
```

- Brunn-Minkowski type inequalities: if and only if ζ is a real valued convex function. Consequence of [Colesanti, Hug and Saorin-Gomez, 2014]. Already studied by [Klartag, 2005].
- Isoperimetric inequalities: if and only if  $\frac{\zeta(x)}{\sqrt{1+|x|^2}}$  is bounded away from 0 [Mussnig and U., 2022+].

In both cases we lose the continuity for the corresponding valuations .

# The inequality

For  $u \in \operatorname{Conv}_0(\mathbb{R}^n)$  we define

$$V_{n,\zeta}(u) := \int_{\operatorname{dom}(u)} \zeta(\nabla u(x)) dx, \quad V_{n+1}(u) := \int_{\operatorname{dom}(u)} |u(x)| dx.$$

Theorem (Mussnig and U., 2022+)

If  $\zeta\in C(\mathbb{R}^n), \zeta(x)\geq c\sqrt{1+|x|^2}, c>0$ , then

$$V_{n,\zeta}(u)^{\frac{1}{n}} \geq C(n,\zeta)V_{n+1}(u)^{\frac{1}{n+1}}$$

for every  $u \in Conv_0(\mathbb{R}^n)$ .

Hint of proof: Many changes of variables and Wulff's inequality .

# **THANKS FOR YOUR ATTENTION!**

# Potential Theory with Multivariate Kernels

## Damir Ferizović

Department of Mathematics KU Leuven



#### History

In 1904, physicist and Nobel Prize winner J. Thomson worked on a model of the atom – this led to the question: which configuration of electrons on a spherical shell would minimize electrostatic potential energy. Known configurations for  $N \in \{1, 2, 3, 4, 5, 6, 12\}.$ 



**Coulomb Potential:** Given a point set  $\omega_N := \{x_1, \ldots, x_N\}$  on the sphere, minimize

$$\sum_{j\neq s} \frac{1}{\|x_j - x_s\|}$$

#### **Riesz potential**

Let  $K: \Omega \times \Omega \to \mathbb{R} \cup \{\infty\}$  where  $\Omega = \mathbb{T}^2$ , K(x, y) = f(||x - y||) and  $f(r) = r^{-\alpha}$ .



\* Borodachov, Hardin and Saff: "*Discrete Energy on Rectifiable Sets*" (2019).

#### Generalization —

Let  $\omega_N := \{x_1, \ldots, x_N\} \subset (\Omega, d)$ , with  $\Omega$  compact and infinite, and  $K : \Omega \times \Omega \to \mathbb{R} \cup \{\infty\}$ , investigate

$$E_{\mathcal{K}}[\omega_{\mathcal{N}}] = \sum_{j \neq s} \mathcal{K}(x_j, x_s).$$

**Lemma.** Let N > 1, then for arbitrary K

$$\frac{\inf_{\omega_N} E_{\mathcal{K}}[\omega_N]}{N(N-1)} \nearrow C \in \mathbb{R} \cup \{\infty\}.$$

Proof. For fixed  $x_j \in \omega_{N+1}$ 

$$E_{\mathcal{K}}[\omega_{N+1}] = E_{\mathcal{K}}[\omega_{N+1} \setminus \{x_j\}] + \sum_{s=1,s\neq j}^{N+1} \mathcal{K}(x_j, x_s) + \mathcal{K}(x_s, x_j),$$

and summing up over j

$$(N+1)E_{\mathcal{K}}[\omega_{N+1}] \geq (N+1)\inf_{\omega_N}E_{\mathcal{K}}[\omega_N]+2E_{\mathcal{K}}[\omega_{N+1}].$$

#### Example: Green kernel \_\_\_\_\_

Let  $(\Omega, d) = (M, g)$  a closed Riemannian manifold, and  $\mathcal{G}$  the normalized Green function for the Laplace-Beltrami operator; set

$$K(x,y) = \mathcal{G}(x,y).$$

**Theorem.** For M = SO(3), we have

$$-3\pi^{1/3}N^{4/3} \leq \inf_{\omega_{\mathcal{N}}\subset \mathrm{SO}(3)} E_{\mathcal{G}}(\omega_{\mathcal{N}}) + O(\mathcal{N}) \leq -4\left(rac{3}{4}
ight)^{4/3}N^{4/3}$$

\* Beltrán & DF: "Approximation to uniform distribution in SO(3)", Constr Approx 52 (2020).

#### Uniform distribution —

**Theorem.** For a compact Riemannian manifold (M, g) with dim(M) > 1, let G be its normalized Green function, then

$$I_G(\lambda) = \inf_{\mu \in \mathbb{P}(M)} I_G(\mu) = \inf_{\mu \in \mathbb{P}(M)} \iint_M G(x, y) \mathrm{d}\mu(x) \mathrm{d}\mu(y),$$

where  $\lambda$  is the uniform measure on M. Minimizing point sets  $\omega_N$  for the Green energy satisfy

$$\omega_N \stackrel{w*}{\to} \lambda.$$

\* Beltrán, Corral, Criado Del Rey: "Discrete and continuous Green energy on compact manifolds" Journal of Approximation Theory (2019).

## Generalization II —

A kernel  $K : \Omega^2 \to \mathbb{R}$  is called *positive definite* if for every finite signed Borel measure  $\mu \in \mathcal{M}(\Omega)$ 

$$I_{\mathcal{K}}(\mu) = \iint_{\Omega} \mathcal{K}(x, y) d\mu(x, y) \geq 0.$$

It is called *conditionally positive definite* if

 $I_{K}(\mu) \geq 0$ 

for all  $\mu \in \mathcal{M}(\Omega)$  with

$$\mu(\Omega)=0.$$

(One assumes the integrals to make sense.) Sum, limit, and product of PD kernels is again PD.

Convexity of  $I_K$  ——

**Lemma.** (BHS p.135) Let K be symmetric, lower semi-continuous, and conditionally positive definite. Given  $\mu, \nu \in \mathbb{P}(\Omega)$  with

 $I_{\mathcal{K}}(\mu), I_{\mathcal{K}}(\nu) < \infty,$ 

then

$$2I_{\mathcal{K}}(\mu,\nu) \leq I_{\mathcal{K}}(\mu) + I_{\mathcal{K}}(\nu);$$

where

$$I_{K}(\mu,\nu) = \iint K(x,y) \mathrm{d}\mu(x) \mathrm{d}\nu(y).$$

Corollary.

$$I_{\mathcal{K}}(t\mu+(1-t)
u)\leq tI_{\mathcal{K}}(\mu)+(1-t)I_{\mathcal{K}}(
u).$$

\* Bilyk, Matzke, Vlasiuk: "*Positive definiteness and the Stolarsky invariance principle.*" arXiv (2021).

**Axilrod-Teller Potential.** Let the angle between vectors x, y be denoted by a(x, y)

$$K(x, y, z) = \frac{1 + 3a(x, y)a(y, z)a(x, z)}{d(x, y)^3 d(y, z)^3 d(x, z)^3}.$$

\* Axilrod, Teller: "Interaction of the van der Waals Type Between Three Atoms", Journal of Chemical Physics. 11 (1943).

**Menger Curvature.** Let A(x, y, z) be the area of the triangle, spanned by x, y, z.

$$c(x,y,z) = \frac{4 A(x,y,z)}{d(x,y)d(y,z)d(x,z)}.$$

## Stillinger-Weber Potential.

\* Stillinger, Weber: "Computer simulation of local order in condensed phases of silicon", Physical Review B. 31 (1985).

Investigated and used for —

## Kissing Numbers.

\* Bachoc, Vallentin: "*New Upper Bounds for Kissing Numbers from Semidefinite Programming*", Journal of the American Mathematical Society 21 (3) (2008).

## **Energy Minimization.**

\* Cohn, Woo: "Three-Point Bounds for Energy Minimization", Journal of the AMS (25) 4 (2012).

\* Bilyk, DF, Glazyrin, Matzke, Park, Vlasiuk: "*Potential theory with multivariate kernels*", Math Z (2022).

## Generalization III —

A real-valued, symmetric, and continuous kernel K will be called (conditionally) 3-positive definite, if for any fixed  $z \in \Omega$ , it holds for

$$G_z(x,y) := K(x,y,z).$$

Sum, limit, and product of PD kernels is again PD.

**Corollary.**  $H(x, y) = \int K(x, y, z) d\mu(z)$  is (conditionally) positive definite, if K is.

**Lemma.** Let  $2 \le m \le n-1$ , and suppose  $H : \Omega^m \to \mathbb{R}$  is continuous, symmetric, and conditionally *m*-positive definite. Then

$$K(z_1,...,z_n) := \sum_{1 \le j_1 < j_2 < \cdots < j_m \le n} H(z_{j_1}, z_{j_2},...,z_{j_m})$$

is conditionally *n*-positive definite.

Some results \_\_\_\_\_

**Lemma.** Suppose K is symmetric, continuous, and (conditionally) PD, then for  $\mu_j \in \mathbb{P}(\Omega)$ 

$$I_{\mathcal{K}}(\mu_1,\ldots,\mu_n)\leq \frac{1}{n}\sum_{j=1}^n I_{\mathcal{K}}(\mu_j).$$

**Corollary.**  $I_K$  is convex.

Now let  $\Omega = \mathbb{S}^2$ , and K be rotationally invariant, i.e. have the form

$$K(x_1,\ldots,x_n)=F((\langle x_i,x_j\rangle)_{i,j=1}^n).$$

Some results II -

**Theorem.** Suppose that  $K : (\mathbb{S}^2)^n \to \mathbb{R}$  is continuous, symmetric, rotationally invariant, and conditionally *n*-positive definite on  $\mathbb{S}^2$ . Then  $\sigma$  is a minimizer of  $I_K$  over  $\mathbb{P}(\mathbb{S}^2)$ .

We will write K(x, y, z) = F(u, v, t) where

$$u = \langle x, y \rangle, \quad v = \langle z, y \rangle, \quad t = \langle x, z \rangle.$$

**Corollary.** Let  $f : [-1,1] \to \mathbb{R}$  be a real-analytic function with nonnegative Maclaurin coefficients and let F(u, v, t) = f(uvt). Then the uniform surface measure  $\sigma$  minimizes the energy  $I_K$  over  $\mathbb{P}(\mathbb{S}^2)$ .

# Thank you for your Time

# Minimizing *p*-Frame Energies and Mixed Volumes

Ryan W. Matzke

Technische Universität Graz

The research in this presentation is in collaboration with Dmitriy Bilyk, Alexey Glazyrin, Josiah Park, and Oleksandr Vlasiuk.

/∄ ▶ ∢ ⊒ ▶ ∢ ⊒

## Energy on the Sphere

Let  $\mathbb{S}^{d-1}$  be the unit sphere in  $\mathbb{R}^d$ . Given a continuous (potential) function  $F : [-1, 1] \to \mathbb{R}$ , the (**discrete**) energy of a configuration (multiset)  $\omega_N = \{z_1, ..., z_N\} \subset \mathbb{S}^{d-1}$  is

$$E_F(\omega_N) = \frac{1}{N^2} \sum_{i,j=1}^N F(\langle z_i, z_j \rangle),$$

and the (continuous) energy of a probability measure  $\mu \in \mathbb{P}(\mathbb{S}^{d-1})$  is

$$I_F(\mu) = \int_{\mathbb{S}^{d-1}} \int_{\mathbb{S}^{d-1}} F(\langle x, y \rangle) d\mu(x) d\mu(y).$$

- What is the mimimal energy (for fixed N for  $E_F$ )?
- Is the uniform measure  $\sigma$  a minimizer of  $I_F$ ? Is the support of any minimizer of a lower dimension? Discrete?
- Are minimizers of  $E_F$  uniformly distributed? Well-separated? Do they concentrate and form "clumps"? What happens as  $N \to \infty$ ?

## Energy on the Sphere

Let  $\mathbb{S}^{d-1}$  be the unit sphere in  $\mathbb{R}^d$ . Given a continuous (potential) function  $F : [-1, 1] \to \mathbb{R}$ , the (**discrete**) energy of a configuration (multiset)  $\omega_N = \{z_1, ..., z_N\} \subset \mathbb{S}^{d-1}$  is  $E_F(\omega_N) = \frac{1}{N^2} \sum_{i=1}^{N} F(\langle z_i, z_j \rangle),$ 

and the (continuous) energy of a probability measure  $\mu \in \mathbb{P}(\mathbb{S}^{d-1})$  is

$$I_F(\mu) = \int_{\mathbb{S}^{d-1}} \int_{\mathbb{S}^{d-1}} F(\langle x, y \rangle) d\mu(x) d\mu(y).$$

• If  $\mu_{\omega_N} = \frac{1}{N} \sum_{j=1}^N \delta_{z_j}$ , then

$$I_F(\mu_{\omega_N}) = \frac{1}{N^2} \sum_{i,j=1}^N F(\langle z_i, z_j \rangle) = E_F(\omega_N).$$

• The weak<sup>\*</sup> density of the linear span of Dirac masses in  $\mathbb{P}(\mathbb{S}^{d-1})$  gives

$$\lim_{N\to\infty}\min_{\omega_N\subset\mathbb{S}^{d-1}}E_F(\omega_N)=\inf_{\mu\in\mathbb{P}(\mathbb{S}^{d-1})}I_F(\mu).$$

For  $s \in \mathbb{R}$ , we define the Riesz kernel as

$$R_{s}(\langle x, y \rangle) = \begin{cases} \frac{1}{\|x-y\|^{s}} & s > 0\\ -\log(\|x-y\|) & s = 0\\ -\|x-y\|^{-s} & s < 0 \end{cases}$$

Coulomb (s = d - 2), Logarithmic (s = 0), Euclidean distance (s = -1).

## Theorem (Björck, 1956)

The minimizers of  $I_{R_s}$  are

- $\sigma$  (uniquely) if -2 < s < d
- Any measure with center of mass at the origin if s = -2
- Any measure of the form  $\frac{1}{2}(\delta_p + \delta_{-p})$  if s < -2.

#### Theorem (Classical; Götz, Hardin, Kuijlaars, Saff)

If s > -2, the minimizers of  $E_{R_s}$  are uniformly distributed on the sphere.

# *p*-Frame Energy

Stronger repulsion tends to lead to minimizers "spreading out" while weaker repulsion leads to the support concentrating.

Theorem (Carillo, Figalli, Patacchini, 2017)

Suppose  $F(\langle x, y \rangle) = G(||x - y||)$  and  $G'(t) \sim -t^{\alpha - 1}$  as  $t \to 0$  for some  $\alpha > 2$ . If  $\mu$  is a minimizer of  $I_F$ , then  $\mu$  has discrete (finite) support.

For  $p \in (0, \infty)$ , we define the *p*-frame potential as

$$F_p(\langle x, y \rangle) = |\langle x, y \rangle|^p.$$

Minimizing this energy for p = 2 results in tight frames/isotropic measures and for p = 4 (in the complex setting) results in symmetric information complete positive operator-valued measures (SIC-POVM's).

Since  $|\langle x, y \rangle|^p = 1 - \frac{p}{2} ||x - y||^2 + O(||x - y||^4)$ , it falls into the limit case  $\alpha = 2$ . We might expect the types of minimizers to vary with *p*.

■▶★臣▶★臣▶ 臣 のへで

## Theorem (Bilyk, Glazyrin, Matzke, Park, Vlasiuk, 2021)

If  $p \in 2\mathbb{N}$ ,  $\sigma$  is a minimizer of  $I_{F_p}$ . If  $p \notin 2\mathbb{N}$  and  $\mu$  is a minimizer, then  $(\operatorname{supp}(\mu))^\circ = \emptyset$ .

## Conjecture (Bilyk, Glazyrin, Matzke, Park, Vlasiuk)

*If*  $p \notin 2\mathbb{N}$ *, then the minimizers of the p-frame energy are discrete.* 

#### Theorem (Bilyk, Glazyrin, Matzke, Park, Vlasiuk, 2022)

If C is a tight (2m + 1)-design on  $\mathbb{S}^{d-1}$  and  $p \in (2m - 2, 2m)$ , then  $\mu = \frac{1}{\#C} \sum_{x \in C} \delta_x$  is a minimizer of  $I_{F_p}$ . Moreover, when this happens, all minimizers of  $I_{F_p}$  are discrete.

(日)

A spherical *k*-design is a set of points  $\{x_1, ..., x_N\} \subset \mathbb{S}^{d-1}$  such that

$$\int_{\mathbb{S}^{d-1}} q(x) d\sigma(x) = \frac{1}{N} \sum_{i=1}^{N} q(x_i)$$

for all polynomials q on  $\mathbb{R}^d$  of degree at most k. A spherical (2m + 1)-design is **tight** if it is centrally symmetric and there are m + 2 inner products between its points.

| d  | C      | <i>p</i> -range | Configuration         |
|----|--------|-----------------|-----------------------|
| d  | 2d     | (0, 2)          | cross polytope        |
| 2  | 2k     | (2k-4, 2k-2)    | 2k-gon                |
| 3  | 12     | (2, 4)          | icosahedron           |
| 7  | 56     | (2, 4)          | kissing configuration |
| 8  | 240    | (4, 6)          | $E_8$ roots           |
| 23 | 552    | (2, 4)          | equiangular lines     |
| 23 | 4600   | (4, 6)          | kissing configuration |
| 24 | 196560 | (8, 10)         | Leech lattice         |
|    |        |                 |                       |

Ryan W. Matzke Minimizing *p*-Frame Energies and Mixed Volumes

## *L<sup>p</sup>*-mixed Volumes

Let  $C \subset \mathbb{R}^d$  be a convex body,

$$\sigma_C(B) = |\{x \in \partial C : n_x \in B\}|_{d-1}$$

for all Borel  $B \subseteq \mathbb{S}^{d-1}$ , and  $h_C$  be the support function of *C* 

$$h_C(y) = \sup_{x \in C} \langle x, y \rangle.$$

Given two convex bodies, *C* and *D*, and  $p \ge 1$ , we define the *L*<sup>*p*</sup>**-mixed** volume of the two to be

$$V_p(C,D) = \frac{p}{d} \lim_{\varepsilon \to 0} \frac{|C +_p \varepsilon D|_d - |C|_d}{\varepsilon} = \frac{1}{d} \int_{\mathbb{S}^{d-1}} h_D(x)^p h_C(x)^{1-p} d\sigma_C(x),$$

where  $C +_p \varepsilon D$  is the convex body with support function

$$h_{C+p \in D}(x) = \sqrt[p]{h_C(x)^p + \varepsilon h_D(x)^p}.$$

直 ア イ ヨ ア イ ヨ ア

# Mixed Volumes with Projection Bodies

The  $L^p$ -projection body of C,  $\Pi_p C$ , is the origin-symmetric convex body with support function

$$h_{\Pi_p C}(x) = \left(c_{d,p} \int_{\mathbb{S}^{d-1}} |\langle x, y \rangle|^p h_C(x)^{1-p} d\sigma_C(x)\right)^{\frac{1}{p}}.$$

Defining  $\sigma_{C,p}$  such that  $d\sigma_{C,p}(x) = h_C(x)^{1-p} d\sigma_C(x)$ , we see that

$$\begin{split} I_{F_p}(\sigma_{C,p}) &= \iint_{\mathbb{S}^{d-1} \times \mathbb{S}^{d-1}} |\langle x, y \rangle|^p d\sigma_{C,p}(x) d\sigma_{C,p}(y) \\ &= \frac{1}{c_{d,p}} \int_{\mathbb{S}^{d-1}} h_{\Pi_p C}(x)^p h_C(x)^{1-p} d\sigma_C(x) = \frac{d}{c_{d,p}} V_p(C, \Pi_p C). \end{split}$$

Thus, minimizing the *p*-frame energy (over admissible measures) is the same as minimizing  $V_p(C, \Pi_p C)$  over all symmetric convex bodies *C* (scaled to satisfy  $\sigma_{C,p}(\mathbb{S}^{d-1}) = 1$ ).

#### Proposition (Bilyk, Glazyrin, Matzke, Park, Vlasiuk, 2022)

The quantity  $\frac{V_1(C,\Pi_1C)}{|\partial C|_{d-1}^2}$  is minimized if and only if C is a hypercube.

# Minimizing *p*-Frame Energies and Mixed Volumes

# Thank you!

<sup>0</sup>This work was in collaboration with Dmitriy Bilyk, Alexey Glazyrin, Josiah Park, and Oleksandr Vlasiuk, and was supported in part by the National Science Foundation Graduate Research Fellowship Grant 00039202.